This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

PREPARATION OF TERTIARY AND DITERTIARY PHOSPHINE DERIVATIVES OF $(\mu$ -RSe)₂Fe₂(CO)₆ VIA CO SUBSTITUTION. THE CRYSTAL STRUCTURE OF $(\mu$ -PhSe)₂Fe₂(CO)₄(Ph₂PCH CHPPh₂)

Li-Cheng Song^a; Chao-Guo Yan^a; Qing-Mei Hu^a; Jie Sun^b; Xi-An Mao^c ^a Department of Chemistry, Nankai University, Tianjin, China ^b Laboratory of Organometallic Chemistry at the Shanghai Institute of Organic Chemistry, Shanghai, China ^c Wuhan Institute of Physics, Academia Sinica, Wuhan, China

To cite this Article Song, Li-Cheng , Yan, Chao-Guo , Hu, Qing-Mei , Sun, Jie and Mao, Xi-An(1996) 'PREPARATION OF TERTIARY AND DITERTIARY PHOSPHINE DERIVATIVES OF $(\mu$ -RSe)₂Fe₂(CO)₆ VIA CO SUBSTITUTION. THE CRYSTAL STRUCTURE OF $(\mu$ -PhSe)₂Fe₂(CO)₄(Ph₂PCH CHPPh₂)', Journal of Coordination Chemistry, 39: 2, 147 – 159 To link to this Article: DOI: 10.1080/00958979608022718

URL: http://dx.doi.org/10.1080/00958979608022718

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PREPARATION OF TERTIARY AND DITERTIARY PHOSPHINE DERIVATIVES OF $(\mu$ -RSe)₂Fe₂(CO)₆ VIA CO SUBSTITUTION. THE CRYSTAL STRUCTURE OF $(\mu$ -PhSe)₂Fe₂(CO)₄(Ph₂PCH=CHPPh₂)

LI-CHENG SONG^{a,*}, CHAO-GUO YAN^a, QING-MEI HU^a, JIE SUN^b and XI-AN MAO^c

^aDepartment of Chemistry, Nankai University, Tianjin, 300071, China ^bLaboratory of Organometallic Chemistry at the Shanghai Institute of Organic Chemistry, Shanghai, 200032, China ^cWuhan Institute of Physics, Academia Sinica, Wuhan, 430071, China

(Received 5 January 1996; In final form 13 April 1996)

Reaction of $(\mu$ -PhSe)₂Fe₂ (CO)₆ with Ph₃P and Ph₂MeP in refluxing benzene afforded *mono*-substituted derivatives $(\mu$ -PhSe)₂Fe₂(CO)₅L (**1a**, L==Ph₃P; **1b**, L==Ph₂MeP), whereas reaction in refluxing toluene gave symmetrically *bis*-substituted derivatives $(\mu$ -PhSe)₂Fe₂(CO)₄L₂(**2a**, L==Ph₃P; **2b**, L==Ph₂MeP); Reaction of $(\mu$ -ArSe)₂Fe₂(CO)₆(Ar==Ph, *p*-MeC₆H₄) with Ph₂PCH₂CH₂PPh₂ in refluxing toluene gave symmetrically substituted ditertiary phosphine-bridged derivatives $(\mu$ -ArSe)₂Fe₂ (CO)₄ (Ph₂PCH₂CH₂PPh₂ in refluxing toluene gave symmetrically substituted ditertiary phosphine-bridged derivatives $(\mu$ -ArSe)₂Fe₂ (CO)₄ (Ph₂PCH₂CH₂PPh₂) (**3a**, Ar == Ph; **3b**, Ar = *p*-MeC₆H₄), while Ph₂PCH = CHPPh₂ in benzene yielded non-symmetrically substituted chelated derivatives $(\mu$ -ArSe)₂Fe₂ (CO)₄ (Ph₂PCH=CHPPh₂) (**4a**, Ar == Ph; **4b**, Ar = *p*-MeC₆H₄), in which the diphosphine is coordinated to a single iron atom. Structures of the above derivatives have been elucidated by IR and NMR (¹H, ¹³C and ⁷⁷Se) spectroscopy; the molecular structure of **4a** was confirmed by X-ray diffraction techniques. It crystallizes in the monoclinic space group *P*2₁/*c* with *a* = 21.908(3), *b* = 17.207(2), *c* = 23.954(2) Å, $\beta = 114.24(1)^\circ$, *V* = 8234 Å³ X, *Z* = 4 and *Dc* = 1.501 g/cm³; final *R* = 0.060 for 3941 observed reflections.

Keywords: CO; substitution; tertiary phosphine; selenolato-complexes; X-ray structure

INTRODUCTION

Although CO substitutions of thiolato-bridged complexes $(\mu$ -RS)₂Fe₂(CO)₆ and $(\mu$ -RS)(μ -R'S)Fe₂(CO)₆ by tertiary phosphines have been extensively studied,¹⁻⁶ corresponding reactions of selenolato-bridged complexes $(\mu$ -RSe)₂Fe₂(CO)₆ are

^{*}Author for correspondence

so far very little explored.⁷ To compare the substitution reactivity of the CO ligand in those bridged complexes and to prepare new derivatives of selenolatobridged complexes, an investigation of the reactions of $(\mu$ -RSe)₂Fe₂(CO)₆ (R=Ph, *p*-MeC₆H₄) with tertiary phosphines Ph₃P, Ph₂MeP, Ph₂PCH₂CH₂PPh₂ and Ph₂PCH=CHPPh₂ was undertaken. Herein we describe the synthesis and characterization of several new tertiary and ditertiary phosphine derivatives and the single-crystal structure of one ditertiary phosphine derivative, $(\mu$ -PhSe)₂Fe₂(CO)₄(Ph₂PCH=CHPPh₂), **4a**.

EXPERIMENTAL

All reactions were carried out under an atmosphere of highly pre-purified tank nitrogen. Benzene and toluene were distilled under nitrogen from sodium/benzophenone ketyl and purged with nitrogen prior to use. Triphenylphosphine, methyldiphenylphosphine, 1, 2-*bis*(diphenylphosphinyl)ethane and *cis*-1, 2*bis*(diphenylphosphinyl)ethylene were chemical reagents purchased from Strem Chemicals Inc.; (μ -PhSe)₂Fe₂(CO)₆ and (μ -p-MeC₆H₄Se)₂Fe₂(CO)₆ were obtained according to published methods.^{8–9}

The progress of reactions was monitored by thin layer chromatography. Column chromatography was carried out with a 300×25 mm column using 200–300 mesh silica gel. Solid products were recrystallized from deoxygenated 1:1 CH₂Cl₂ and hexane at -20°C.

Melting points are uncorrected. Microanalyses were performed on a Perkin Elmer 240C instrument. IR spectra were recorded on a Nicolet FT-IR 5DX spectrophotometer using KBr discs. ¹H, ¹³C and ⁷⁷Se NMR spectra were recorded on JEOL FX-90Q and Bruker ARX-500 NMR spectrometers.

Preparation of 1a-b

A 100 cm³ Schlenk flask equipped with a stir bar and a nitrogen inlet tube was charged with 0.296 g (0.5 mmol) of $(\mu$ -PhSe)₂Fe₂(CO)₆, 0.157 g (0.6 mmol) of triphenylphosphine and 30 cm³ of benzene. The mixture was stirred at reflux for 3 h. Solvent was removed *in vacuo* and the residue was subjected to column chromatography. First, a mixture of petroleum ether and CH₂Cl₂(v/v = 9/1) eluted a minor orange band, which was not collected. Further elution with a mixture of petroleum ether and CH₂Cl₂ (v/v = 3/1) yielded a major red band, from which 0.193 g (47%) of **1a** was obtained as red crystals after recrystallization. M.p. 118–119°C; anal., calcd for C₃₅H₂₅Fe₂O₅PSe₂: C, 50.88; H, 3.05%;

found: C, 51.14; H, 3.55%; IR (KBr disc): $v_{C=0}$ 2041 (vs), 1975 (vs), 1926 (s) cm⁻¹; ¹H NMR (CDCl₃, δ) : 6.52–7.76 (m, 25H, 5C₆H₅) ppm; ⁷⁷Se NMR (CDCl₃, Me₂Se₂, δ) : 297.58 (s) ppm.

A similar reaction using 0.11 cm³ (0.6 mmol) methyldiphenylphosphine instead of triphenylphosphine was carried out to afford 0.347 g (98%) of **1b** as red crystals after recrystallization. M. p. 118–120°C; anal., calcd. for $C_{30}H_{23}Fe_2O_5PSe_2$: C, 47.16; H, 3.03%; found: C, 47.01; H, 3.17%; IR (KBr disc) : $v_{C=0}$ 2032(vs), 1983 (vs), 1934(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 2.08 (d, J=7.2Hz, 3H, CH₃), 6.78–7.94 (m, 20H, 4C₆H₅) ppm.

Preparation of 2a-b

To a flask as described above was added 0.296 g (0.5 mmol) of $(\mu$ -PhSe)₂Fe₂(CO)₆, 0.392 g (1.5 mmol) of triphenylphosphine and 50 cm³ of toluene. The mixture was stirred at reflux for 6 h. Solvent was removed *in vacuo* and the residue was subjected to column chromatography. A mixture of CH₂Cl₂ and petroleum ether (v/v = 1/4) eluted a red band, from which 0.251 g (41%) of **1a** was obtained. Further elution with a mixture of CH₂Cl₂ and petroleum ether (v/v = 2/3) yielded a dark red band, from which 0.209 g (39%) of **2a** was obtained as dark red crystals after recrystallization. M.p. 166–168°C; anal., calcd for C₅₂H₄₀Fe₂O₄P₂Se₂: C, 58.90; H, 3.80%; found: C, 58.84; H, 3.86%; IR (KBr disc) : v_{C=0} 1983(vs), 1936(m), 1918 (vs) cm⁻¹ 10; ⁻¹H NMR (CDCl₃, δ): 6.52–7.80 (m, 40H, 8C₆H₅) ppm; ⁷⁷Se NMR (CDCl₃, Me₂Se₂, δ): 215.76(s), 273.31(s) ppm.

The same procedure as that described above for **2a** was used in the preparation of **2b**, except for using 0.22 cm³ (1.2 mmol) of methyldiphenylphosphine instead of triphenylphosphine. The reaction gave 0.204 g(53%) of **1b** and 0.182 g(39%) of **2b** as dark red solids. M. p. 146–147°C; anal., calcd. for $C_{42}H_{36}Fe_2O_4P_2Se_2$: C, 53.88; H, 3.88%; found: C, 53.55; H, 3.75%; IR(KBr disc) : $v_{C=0}$ 1983(vs), 1942 (m), 1918(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 2.28 (d, J=7.2Hz, 6H, 2CH₃), 6.46–8.00 (m, 30H, 6C₆H₅) ppm.

Preparation of 3a-b

To a flask as described above was added 0.296 g (0.5 mmol) of $(\mu$ -PhSe)₂Fe₂(CO)₆, 0.199 g (0.5 mmol) of Ph₂PCH₂CH₂PPh₂ and 30 cm³ of toluene. The mixture was stirred at reflux for 2 h. After removal of the solvent *in vacuo* the residue was subjected to column chromatography. First, petroleum ether eluted a minor orange band, which was not collected. Further elution with a mixture of CH₂Cl₂/petroleum ether (v/v = 1/1) yielded a major red band, from which 0.177 g (38%) of **3a** was obtained as red crystals after recrystallization. M.p. 236–237°C; anal., calcd for C₄₂H₃₄Fe₂O₄P₂Se₂: C, 53.99; H, 3.67%; found: C, 53.65; H, 4.10%; IR(KBr disc): v_{C=0} 1984(s), 1952(vs), 1924(s), 1897(m) cm⁻¹; ¹H NMR (CDCl₃, δ): 2.20–2.80 (m, 4H, 2CH₂), 6.96 – 8.16 (m, 30H, 6C₆H₅) ppm; ⁷⁷Se NMR (CDCl₃, Me₂Se₂, δ): 243.01(s), 320.31(t, J = 250Hz) ppm.

The same procedure as that described above for **3a** was used in the preparation of **3b**, except for using 0.301 g (0.5 mmol) of $(\mu$ -p-MeC₆H₄Se)₂Fe₂(CO)₆ instead of $(\mu$ -PhSe)₂Fe₂(CO)₆. The reaction gave 0.172 g (36%) of **3b** as red crystals after recrystallization. M.p. 242–244°C; anal., calcd. for C₄₄H₃₈Fe₂O₄P₂Se₂: C, 54.92; H, 3.98%; found: C, 54.92; H, 3.87%; IR(KBr disc): v_{C=0} 1983(s), 1950(vs), 1918(s), 1893(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 2.12, 2.30(s, s, 6H, 2CH₃), 2.35–2.50(m, 4H, 2CH₂), 6.70–7.88(m, 28H, 4C₆H₅, 2C₆H₄); ¹³C NMR (CDCl₃, δ): 21.07 (m, CH₃), 24.81, 25.01 (s, s, 2CH₂),128–139 (m, 4C₆H₅, 2C₆H₄), 216.24–216.28(m, 4CO) ppm; ⁷⁷Se NMR (CDCl₃, Me₂Se₂, δ): 239.05(s), 313.09 (t, J = 268Hz) ppm.

Preparation of 4a-b

To a flask as described above was added 0.296 g (0.5 mmol) of $(\mu$ -PhSe)₂Fe₂(CO)₆, 0.224 g (0.6 mmol) of Ph₂PCH=CHPPh₂ and 30 cm³ of benzene. The mixture was stirred at reflux for 2 h. Solvent was removed *in vacuo* and the residue was subjected to column chromatography. First, petroleum ether eluted a minor orange band, which was not collected. Then, a mixture of CH₂Cl₂/petroleum ether (v/v = 1/1) eluted a major red band, from which 0.361 g (81%) of **4a** was isolated as black crystals after recrystallization. M.p. 162–163°C; anal., calcd for C₄₂H₃₂Fe₂O₄P₂Se₂ · 0.36CH₂Cl₂: C, 52.87; H, 3.43%; found: C, 52.42; H, 3.41%; IR(KBr disc): v_{C=0} 2008(vs), 1950(vs), 1926(s) cm⁻¹; ¹H NMR (CDCl₃, δ): 5.36(s, 0.36 × 2H, CH₂Cl₂), 6.58(d, J = 7.2Hz, 2H, 2CH), 6.80–7.88(m, 30H, 6C₆H₅) ppm; ⁷⁷Se NMR (CDCl₃, Me₂Se₂, δ): 223.55(s), 324.01(d, J = 490Hz) ppm.

The same procedure as that described above for **4a** was used in the preparation of **4b**, except that 0.301 g (0.5 mmol) of $(\mu$ -*p*-MeC₆H₄Se)₂Fe₂(CO)₆ was used instead of $(\mu$ -PhSe)₂Fe₂(CO)₆. Some 0.405 g (84%) of **4b** was produced as black crystals after recrystallization. M.p. 162–164°C; anal., calcd. for C₄₄H₃₆Fe₂O₄P₂Se₂: C, 55.03; H, 3.78%; found: C, 55.32; H, 3.81%; IR(KBr disc): v_{C=0} 2016(vs), 1950 (vs), 1909(s) cm⁻¹; ¹H NMR (CDCl₃, δ): 1.92, 1.97 (s, s, 6H, 2CH₃), 6.11–7.84 (m, 30H, 2CH, 4C₆H₅, 2C₆H₄) ppm; ¹³C NMR (CDCl₃, δ): 20.87, 20.99(s, s, 2CH₃), 127–140(m, 4C₆H₅, 2C₆H₄, 2CH), 151.19–151.90(m, CO), 212.89 (s, 3CO) ppm; ⁷⁷Se NMR (CDCl₃, Me₂Se₂, δ): 222.10(s), 314.73(d, J = 560Hz) ppm.

Single crystal structural determination of 4a

Crystals of **4a** suitable for X-ray diffraction were obtained by recrystallization from CH₂Cl₂/hexane in a refrigerator. A black crystal measuring $0.3 \times 0.2 \times 0.2$ mm was mounted on a glass fibre and placed on a Rigaku-AFC 7R diffractometer fitted with a graphite monochromator. A total of 7541 independent reflections were collected at room temperature with MoK α ($\lambda = 0.71069$ Å) radiation by the ω -2 θ scan mode. Of these, 3941 independent reflections with *I*>3s(*I*) were considered to be observed and were used in subsequent refinement. Data were corrected for Lp factors. Crystal data are listed in Table I.

Formula	$C_{84}H_{60}O_8P_4Se_4Fe_4$
Formula Weight	1860. 52
Crystal Colour, Habit	black, prismatic
Crystal System	monoclinic
Space Group	$P2_1/c$ (# 14)
a(A)	21. 908(3)
$b(\mathbf{A})$	17. 207(2)
$c(\dot{\mathbf{A}})$	23. 954(2)
β(°)	114. 24(1)
Z	4
$Dc(g \cdot cm^{-3})$	1. 501
F(000)	3712. 00
$\mu(cm^{-1})$	25.89
Data collected	7813
Unique data	7451
Data with $I \ge 3\sigma(I)$	3941
R	0.060
R _w	0.067
$(\hat{\rho})$ max (eÅ ⁻³)	1.2

TABLE I Crystal data and details of structure refinement for 4a

The structure was solved by direct methods and Fourier techniques. Some non-hydrogen atoms were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were included but not refined. The final refinement by full-matrix least-squares method for non-hydrogen atoms converged to unweighted and weighted agreement factors of 0.060 (*R*) and 0.067 (R_w). The highest peak in the final difference Fourier map was 1.2e/Å.³ All calculations were performed using the TEXSAN crystallographic software package of the Molecular Structure Corporation.

RESULTS AND DISCUSSION

It has been found that one equivalent of selenolato-bridged compound $(\mu$ -PhSe)₂Fe₂(CO)₆ reacted with tertiary phosphine Ph₃P or Ph₂MeP in benzene at reflux to afford mono-substituted derivatives $(\mu$ -PhSe)₂Fe₂(CO)₅(Ph₃P) (**1a**) and $(\mu$ -PhSe)₂Fe₂(CO)₅(Ph₂MeP) (**1b**), respectively (Scheme 1). Owing to the greater steric hindrance of Ph₃P the yield of **1a** is much lower than that of **1b**. For example, reaction with PPh₃ for 3 h gave **1a** in 47% yield, whereas reaction with Ph₂MeP for 3 h afforded **1b** in essentially quantitative yield. Similarly, *bis*-substituted derivatives (μ -PhSe)₂Fe₂(CO)₄(Ph₃P)₂(**2a**) and (μ -PhSe)₂Fe₂(CO)₄-(Ph₂MeP)₂ **2b**) (Scheme 1) were obtained in 39% yield by refluxing a mixture of 1:3 (μ -PhSe)₂Fe₂(CO)₆ and the tetiary phosphine Ph₃P or Ph₂MeP in toluene, along with the corresponding mono-substituted derivatives **1a** (41%) and **1b** (53%), respectively.

Scheme 1

Derivatives **1a–b** (**1a** was previously reported, but with incomplete characterization data)⁷ and **2a–b** were well characterized by elemental analysis, IR and ¹H(⁷⁷Se) NMR spectroscopies. ¹H NMR spectra exhibited the presence of corresponding organic groups and the IR spectra showed three absorption bands in the range 2041 - 1918 cm⁻¹, characteristic of the terminal carbonyls attached to iron atoms. It is worth noting that $v_{C=0}$ value of the derivatives, compared to the parent complex (μ -PhSe)₂Fe₂(CO)₆(2065, 2024, 1991, 1975 cm⁻¹),⁸ have shifted considerably to lower frequences. For example, for mono-substituted derivatives **1a–b**, the highest energy $v_{C=0}$ bands decrease by 24 cm⁻¹ and 33 cm⁻¹ respectively, whereas for *bis*-substituted derivatives **2a–b**, the highest energy $v_{C=0}$ bands decrease by 82 cm⁻¹. Obviously, this should be attributed to the strong electron-releasing effects of tertiary phosphines, which can enhance $d\pi$ -p π back-bonding between the iron atom and the carbon atom of the carbonyl groups, and in turn reduce the bond order of the terminal carbonyls.¹⁰ In addition, since the axial CO ligands are more reactive than equatorial ones in similar nucleophilic substitutions of thiolato-bridged complexes (this had been confirmed by crystal structures of corresponding tertiary phosphine substituted derivatives, such as $(\mu$ -cyclo-C₆H₁₁S)(μ -n-C₅H₁₁S)Fe₂ (CO)₅ (PPh₃)⁵ and $(\mu$ -*i*-C₃H₇S) (μ -PhCH₂S) Fe₂ (CO)₄ (PPh₃)₂)⁶), the tertiary phosphine ligand L in **1a–b** and **2a–b** would be reasonably proposed as being located in an axial position.

Further study showed that the selenolato-bridged complexes (μ -PhSe)Fe₂(CO)₆ and (μ -*p*-MeC₆H₄Se)₂Fe₂(CO)₂ might react with ditertiary phosphine Ph₂PCH₂. CH₂PPh₂ in toluene at reflux to give symmetrically substituted, bridged species **3a–b** (Scheme 2). Analysis, IR and ¹H(¹³C, ⁷⁷Se) NMR spectra are in good agreement with the structures shown in Scheme 2. For instance, the IR spectra of **3a–b**, similar to those of *bis*-substituted **2a–b**, showed four absorption bands for terminal carbonyls in the range 1984 – 1893 cm⁻¹. The highest energy $\nu_{C=O}$ bands for **3a–b**, as compared with respective parent complexes (μ -PhSe)Fe₂(CO)₆ and (μ -*p*-MeC₆H₄Se)₂Fe₂(CO)₆(2065, 2032, 2000, 1967 cm⁻¹)⁹ decrease by 81 and 82 cm⁻¹, respectively.

This implies that **3a–b** are *bis*-substituted derivatives. However, in contrast to **2a–b** derived from a monophosphine, the ditertiary phosphine ligand in **3a–b** has displaced two less reactive equatorial carbonyls in order to avoid strong steric repulsions involving two μ -ArSe ligands with the supposed *endo*-ditertiary phosphine Ph₂PCH₂CH₂PPh₂. In ¹H NMR spectrum of **3b** there are two *p*-Me signals, at δ 2.12 and 2.30 ppm, which means that the two *p*-CH₃C₆H₄ groups attached to Se atoms are in *anti* positions.

More interestingly, $(\mu$ -ArSe)₂Fe₂(CO)₆ (Ar — Ph, *p*-MeC₆H₄) reacted with another ditertiary phosphine Ph₂PCH — CHPPh₂ in refluxing benzene to afford non-symmetrically substituted, chelated compounds **4a–b** in 81% and 84% yields, respectively (Scheme 2). The structures shown in Scheme 2 are also in good agreement with analyses, IR and ¹H (¹³C, ⁷⁷Se) NMR data. The differences between the structures of **3a–b** and **4a–b** are reflected in the IR and ¹³C spectra: (i) in the IR spectra the highest energy $v_{C=0}$ of **4a–b**, as compared with those of parent complexes, shifted toward lower frequencies by only 57 and 49 cm⁻¹, whereas those of **3a–b** shifted by 81 and 82 cm⁻¹, as mentioned above. These values coincide very well with **4a–b** having an unsubstituted Fe (CO)₃ unit and with **3a–b** having a *bis*-substituted Fe(CO)₂ (diteritary phosphine) Fe(CO)₂ structural unit; (ii) the ¹³C spectrum of **3b** showed one multiplet (with small ²JP-C) at about δ 216 ppm, assigned to the carbonyls in the structural unit [(CO)₂FePPh₂CH₂]₂, whereas that of **4b** showed one multiplet (also with small ²JP-C) at about δ 151 ppm, assigned to the carbonyl attached to ditertiary phosphine-chelated iron atom and one singlet at about 213 ppm, assigned to the carbonyls in the unsubstituted Fe(CO)₃ group.

In addition, in a similar way to **3b**, the *p*-MeC₆H₄ groups of **4b** should be attached to Se atoms in *anti* positions since its ¹H NMR spectrum showed two singlets at δ 1.92 ppm and δ 1.97 ppm for two *p*-CH₃ substituents.

In order to elucidate the orientations of the aryl groups attached to Se atoms and to further establish the structures of the derivatives mentioned above, the ⁷⁷Se NMR spectra of 1a, 2a, 3a-b, 4a-b along with parent complex $(\mu$ -PhSe)₂Fe₂(CO)₆ were recorded. ⁷⁷Se NMR showed that the parent complex contains two kinds of Se atoms, which are bonded to two aryl groups in anti positions. This is because the spectrum of the parent complex showed two singlets, one at δ 318.03 ppm and the other at 276.66 ppm. For the mono-Ph₃P substituted derivative 1a, the ⁷⁷Se NMR spectrum showed one singlet at δ 297.58 ppm. This indicates that there is only one kind of Se atom both attached to syn phenyl groups (for **1a** another syn isomer, which has two endo phenyl groups, could not exist due to strong steric repulsion between the two aryl groups) and thus the isomer conversion from *anti* to syn occured during nucleophilic substitution of the parent complex. However, for the bis-Ph₃P-substituted derivative 2a, the ⁷⁷Se NMR spectrum showed two singlets at δ 273.31 and 215.76 ppm, which clearly indicates that no isomer conversion occured during substitution and the two phenyl groups remain in *anti* positions. It should be pointed out that the two ⁷⁷Se values, compared to those of the parent complex shifted upfield about 44 ppm and 61 ppm due to the electron-releasing effects of the two Ph₃P ligands. Different from 1a and 2a, the ⁷⁷Se NMR spectrum of 3a showed one singlet at δ 243.01 ppm and one triplet at δ 320.31 ppm (²J_{P-SE} = 250 Hz), while that of 3b showed one singlet at 239.05 ppm and one triplet at 313.09 ppm $({}^{2}J_{P-SE} = 268Hz)$. These data are in good agreement with the symmetrically substituted structures having two anti aryl groups. The downfield triplet is assigned to the Se atom close to the two P atoms of the ditertiary phosphine, whereas the upfield singlet is assigned to the Se atom remote from the ditertiary phosphine.

The ⁷⁷Se NMR spectra for **4a**–**b** are in accordance with the non-symmetrically substituted, chelated structures having two *anti* aryl groups. The spectra showed one singlet upfield (δ 223.55 ppm for **4a** and δ 222.10 ppm for **4b**) and one doublet downfield [δ 324.01 ppm (²J_{P-SE} = 490 Hz) for **4a** and δ 314.73 ppm (²J_{P-SE} = 560 Hz) for **4b**]. The downfield doublet for **4a** or **4b** is assigned to the Se atom close to the P atom in an equatorial position. Similar coupling interactions between phosphorus and selenium were also observed in the case of (μ -PhSe) [μ -CPhSe(i-Pr)P]Fe₂(CO)₆.¹²

In order to unequivocally confirm the structure of 4a, an X-ray diffraction analysis was undertaken. Table II lists atomic coordinates and equivalent isotropic temperature factors for non-hydrogen atoms. Although there are two crystallographically independent molecules in the asymmetric unit, only one set of bond lengths and one set of angles are listed in Tables III and IV, respectively. This is because the two independent molecules are essentially the same, slight differences being within experimental error. Figure 1 shows the molecular structure.

TABLE II Fractional coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms of 4a

Atom	x/a	y/b	z/c	Beq
Se(1)	0.0248(1)	-0.0042(1)	0.20688(9)	3.14(5)
Se(2)	-0.1139(1)	-0.0811(1)	0.12867(9)	3.18(5)
Se(3)	0.5534(1)	0.2341(1)	0.24894(9)	3.74(6)
Se(4)	0.6164(1)	0.2004(1)	0.15502(9)	3.61(6)
Fe(1)	-0.0073(1)	-0.1373(1)	0.1887(1)	2.76(7)
Fe(2)	-0.0260(1)	-0.0387(2)	0.1003(1)	3.25(8)
Fe(3)	0.5349(1)	0.1302(2)	0.1762(1)	3.12(7)
Fe(4)	0.5206(2)	0.2766(2)	0.1459(1)	3.73(9)
P(1)	-0.0022(3)	-0.1824(3)	0.2770(2)	3.2(1)
P(2)	-0.0406(3)	-0.2549(3)	0.1516(2)	3.3(1)
P(3)	0.4510(3)	0.0853(3)	0.1957(2)	3.5(2)
P(4)	0.5903(3)	0.0243(3)	0.2195(2)	3.4(1)
O(1)	-0.0833(9)	-0.1259(9)	-0.0146(7)	6.9(5)
O(2)	0.1026(8)	-0.0559(9)	0.0925(7)	5.7(5)
O(3)	0.1258(7)	-0.1937(8)	0.2135(6)	4.4(4)
O(4)	-0.0678(9)	0.1188(9)	0.0501(8)	8.1(6)
O(5)	0.4760(7)	0.0655(8)	0.0546(6)	4.6(4)
O(6)	0.4555(9)	0.264(1)	0.0135(7)	8.0(5)
O(7)	0.3871(9)	0.3045(10)	0.1385(8)	7.1(6)
O(8)	0.573(1)	0.4341(9)	0.1558(8)	8.4(6)
C(1)	-0.062(1)	-0.093(1)	0.031(1)	5.0(7)
C(2)	0.052(1)	-0.047(1)	0.0969(7)	2.5(5)
C(3)	0.074(1)	-0.170(1)	0.2041(9)	3.2(6)
C(4)	-0.055(1)	0.058(1)	0.0688(10)	5.2(7)
C(5)	-0.016(1)	-0.322(1)	0.2175(9)	4.6(6)
C(6)	0.003(1)	-0.290(1)	0.2721(9)	4.0(6)
C(7)	0.118(1)	0.015(1)	0.2310(9)	4.1(5)
C(8)	0.140(1)	0.075(1)	0.2047(9)	5.2(5)

TABLE	Π	(Continued)

Atom	x/a	y/b	z/c	Beq	
C(9)	0.209(1)	0.090(1)	0.226(1)	6.3(6)	
C(10)	0.254(1)	0.049(1)	0.270(1)	7.0(6)	
C(11)	0.235(1)	-0.011(1)	0.2987(10)	6.2(6)	
C(12)	0.166(1)	-0.027(1)	0.2785(9)	5.3(5)	
C(13)	0.0730(10)	-0.155(1)	0.3455(8)	3.5(4)	
C(14)	0.126(1)	-0.205(1)	0.3682(10)	5.4(5)	
C(15)	0.184(1)	-0.177(2)	0.419(1)	8,4(7)	
C(16)	0.188(1)	-0.104(2)	0.442(1)	7.2(6)	
C(17)	0.132(1)	-0.058(1)	0.4196(10)	5.9(6)	
C(18)	0.073(1)	-0.081(1)	0.3696(9)	44(5)	
C(19)	-0.0689(9)	-0.1785(10)	0.3057(8)	28(4)	
C(20)	-0.054(1)	-0.197(1)	0.3655(9)	5.0(5)	
C(21)	-0.004(1)	-0.198(2)	0.384(1)	8.4(7)	
C(21)	-0.170(2)	-0.193(2)	0.347(1)	8 6(8)	
C(22)	-0.195(1)	0.169(1)	0.347(1) 0.288(1)	6.5(6)	
C(23)	-0.133(1)	-0.109(1)	0.2670(0)	4.6(5)	
C(24)	-0.1407(10)	-0.100(1)	0.2079(9)	38(4)	
C(25)	-0.1407(10)	0.009(1)	0.1057(0)	J.0(4)	
C(20)	-0.110(1)	0.019(1)	0.2233(9) 0.2481(0)	4.2(3)	
C(27)	-0.143(1)	0.000(1)	0.2461(9)	5.3(3)	
C(28)	-0.186(1)	0.132(1)	0.207(1)	0.0(0)	
C(29)	-0.207(1)	0.123(1)	0.1493(10)	5.3(5)	
C(30)	-0.185(1)	0.059(1)	0.1228(8)	4.4(5)	
C(31)	-0.1300(10)	-0.279(1)	0.1096(8)	3.7(4)	
C(32)	-0.167(1)	-0.302(1)	0.1397(9)	5.4(5)	
C(33)	-0.237(1)	-0.316(1)	0.108(1)	7.9(7)	
C(34)	-0.263(1)	-0.311(1)	0.044(1)	6.0(6)	
C(35)	-0.228(1)	-0.288(1)	0.014(1)	6.5(6)	
C(36)	-0.156(1)	-0.272(1)	0.0473(9)	5.1(5)	
C(37)	-0.0043(10)	-0.304(1)	0.1049(8)	3.6(4)	
C(38)	-0.011(1)	-0.386(1)	0.0936(10)	5.7(6)	
C(39)	0.015(1)	-0.425(1)	0.0581(10)	5.9(6)	
C(40)	0.049(1)	-0.383(1)	0.0314(9)	5.6(6)	
C(41)	0.058(1)	-0.301(1)	0.0398(9)	5.1(5)	
C(42)	0.032(1)	-0.263(1)	0.0791(8)	4.2(5)	
C(43)	0.5009(10)	0.091(1)	0.1053(9)	2.9(6)	
C(44)	0.484(1)	0.267(1)	0.067(1)	5.5(7)	
C(45)	0.443(1)	0.292(1)	0.1435(9)	4.3(7)	
C(46)	0.555(1)	0.374(1)	0.1535(9)	4.9(7)	
C(47)	0.531(1)	-0.042(1)	0.2348(8)	3.6(6)	
C(48)	0.471(1)	-0.014(1)	0.2239(8)	3.8(6)	
C(49)	0.647(1)	0.262(1)	0.3005(9)	4.1(5)	
C(50)	0.672(1)	0.230(1)	0.3585(10)	5.1(5)	
C(51)	0.736(1)	0.251(1)	0.3998(10)	5.7(6)	
C(52)	0.774(1)	0.300(1)	0.383(1)	6.1(6)	
C(53)	0.747(1)	0.333(1)	0.325(1)	6.0(6)	
C(54)	0.683(1)	0.313(1)	0.2815(9)	4.8(5)	
C(55)	0.471(1)	0.111(1)	0.3163(10)	5.1(5)	
C(56)	0.463(1)	0.146(1)	0.365(1)	6.8(6)	
C(57)	0.411(1)	0.197(1)	0.349(1)	7.0(6)	
C(58)	0.373(1)	0.218(1)	0.293(1)	7.6(7)	
C(59)	0.381(1)	0.181(1)	0.2445(9)	5,4(5)	
C(60)	0.4311(10)	0.129(1)	0.2557(8)	3.6(4)	
C(61)	0.3668(9)	0.074(1)	0.1340(8)	3.1(4)	
C(62)	0.346(1)	0.111(1)	0.0795(9)	4,4(5)	
<u>C(62)</u>	0.346(1)	0.111(1)	0.0795(9)	4.4(5)	

Atom	x/a	y/b	z/c	Beq	
C(63)	0.284(1)	0.099(1)	0.0328(9)	4.4(5)	
C(64)	0.242(1)	0.049(1)	0.0428(10)	5.3(5)	
C(65)	0.260(1)	0.010(1)	0.097(1)	7.1(6)	
C(66)	0.322(1)	0.024(1)	0.1462(10)	5.5(5)	
C(67)	0.6131(6)	0.181(1)	0.0750(8)	3.4(4)	
C(68)	0.617(1)	0.241(1)	0.0390(9)	5.1(5)	
C(69)	0.619(1)	0.229(1)	-0.018(1)	6.7(6)	
C(70)	0.623(1)	0.156(1)	-0.036(1)	6.5(6)	
C(71)	0.622(1)	0.093(1)	0.001(1)	5.9(6)	
C(72)	0.6178(10)	0.106(1)	0.0553(9)	4.0(5)	
C(73)	0.6171(10)	-0.038(1)	0.1725(8)	2.9(4)	
C(74)	0.5660(10)	-0.078(1)	0.1257(8)	3.5(4)	
C(75)	0.581(1)	-0.122(1)	0.0832(8)	4.3(5)	
C(76)	0.644(1)	-0.126(1)	0.0875(8)	4.2(5)	
C(77)	0.695(1)	-0.088(1)	0.1335(9)	4.4(5)	
C(78)	0.680(1)	-0.043(1)	0.1757(8)	4.2(5)	
C(79)	0.665(1)	0.025(1)	0.2915(9)	4.2(5)	
C(80)	0.673(1)	-0.023(1)	0.338(1)	6.2(6)	
C(81)	0.733(2)	-0.025(2)	0.390(1)	8.2(7)	
C(82)	0.780(1)	0.025(1)	0.394(1)	6.7(6)	
C(83)	0.777(1)	0.076(1)	0.352(1)	5.4(5)	
C(84)	0.716(1)	0.078(1)	0.2998(10)	5.5(5)	

TABLE II (Continued)

TABLE III Selected bond lengths (Å) for 4a

atom	atom	distance	atom	atom	distance
Se(1)	Fe(1)	2.383(3)	Se(1)	Fe(2)	2.403(3)
Se(1)	C(7)	1.91(2)	Se(2)	Fe(1)	2.388(3)
Se(2)	Fe(2)	2.403(4)	Se(2)	C(25)	1.96(2)
P(1)	C(6)	1.86(2)	P(1)	C(13)	1.85(2)
P(1)	C(19)	1.86(2)	P(2)	C(5)	1.85(2)
P(2)	C(31)	1.84(2)	P(2)	C(37)	1.82(2)
Fe(1)	Fe(2)	2.611(4)	Fe(1)	$\mathbf{P}(1)$	2.211(6)
Fe(1)	P(2)	2.211(6)	Fe(1)	C(3)	1.76(2)
Fe(2)	C(1)	1.78(2)	Fe(2)	C(2)	1.76(2)
O(1)	C(1)	1.15(2)	O(2)	C(2)	1.16(2)
O(3)	C(3)	1.14(2)	O(4)	C(4)	1.12(2)
Fe(3)	C(43)	1.69(2)	Fe(4)	C(44)	1.73(2)
Fe(4)	C(45)	1.70(3)	Fe(4)	C(46)	1.81(2)

TABLE IV Selected bond angles (Å) for 4a

66.1(1) 109.6(6) 116.9(6)	Fe(1) Fe(1) Fe(2)	Se(1) Se(2) Se(2)	C(7) Fe(2) C(25)	114.6(6) 66.0(1) 107.3(6)
109.6(6) 116.9(6)	Fe(1) Fe(2)	Se(2) Se(2)	Fe(2)	66.0(1) 107.3(6)
116.9(6)	Fe(2)	Se(2)	C(25)	107 3(6)
				107.5(0)
105.5(7)	Fe(1)	P(1)	C(13)	115.9(6)
127.2(6)	C(6)	P(1)	C(13)	104.5(9)
98.1(9)	C(13)	P(1)	C(19)	102.3(8)
82.1(1)	Se(1)	Fe(1)	Fe(2)	57.31(9)
105.5(2)	Se(1)	Fe(1)	P(2)	167.7(2)
	82.1(1) 105.5(2)	82.1(1) Se(1) 105.5(2) Se(1)	82.1(1) Se(1) Fe(1) 105.5(2) Se(1) Fe(1)	82.1(1) Se(1) Fe(1) Fe(2) 105.5(2) Se(1) Fe(1) P(2)

atom	atom	atom	angle	atom	atom	atom	angle
Se(1)	Fe(1)	C(3)	94.1(6)	Se(2)	Fe(1)	Fe(2)	57.25(10)
Se(2)	Fe(1)	P(1)	111.8(2)	Se(2)	Fe(1)	P(2)	92.8(2)
Se(2)	Fe(1)	C(3)	155.9(7)	Fe(2)	Fe(1)	P (1)	158.9(2)
Fe(2)	Fe(1)	P(2)	110.6(2)	Fe(2)	Fe(1)	C(3)	100.8(7)
P(1)	Fe(1)	P(2)	86.7(2)	P(1)	Fe(1)	C(3)	92.2(7)
P(2)	Fe(1)	C(3)	85.9(6)	Se(1)	Fe(2)	Se(2)	81.4(1)
Se(1)	Fe(2)	Fe(1)	56.57(9)	Se(1)	Fe(2)	C(1)	162.7(6)
Se(1)	Fe(2)	C(2)	92.0(5)	Se(1)	Fe(2)	C(4)	98.2(7)
Se(2)	Fe(2)	Fe(1)	56.70(10)	Se(2)	Fe(2)	C(1)	90.4(7)

TABLE IV (Continued)

As seen in Figure 1, the ditertiary phosphine $Ph_2PCH=CHPPh_2$ has indeed displaced one axial CO and one equatorial CO from the same iron atom of the parent complex. Additionally, Figure 1 clearly shows that the two phenyl groups are bonded to the two Se atoms in *anti* positions.

The Fe(1)—Fe(2) [2.611(4) Å] distance of **4a** is slightly longer than Fe—Fe bondlengths in similar Se-containing compounds, such as 2.544(2) Å in (μ -PhSe) (μ -PhCH==CH)Fe₂(CO)₆,⁸ and 2.575(2) Å in (μ -Se2)Fe₂ (CO)₆.¹¹ In the **4a** the bondlengths Fe(1)—Se(1) and Fe(1)—Se(2) (close to the ditertiary phosphine) equal 2.383(3) and 2.388(3) Å, and are slightly shorter than Fe(2)—Se(1) 2.403(3) and Fe(2)—Se(2) 2.403(4) Å (remote from the ditertiary phosphine). The average Fe—Se bondlength of **4a** (2.395 Å) is almost the same as the average Fe—Se bondlengths in (μ -PhSe)(μ -PhCH==CH) Fe₂(CO)₆(2.385 Å)⁸ and slightly longer than that in (μ -Se₂)Fe₂(CO)₆(02.364 Å).¹¹ It is noteworthy that this is the first crystal structure for a ditertiary phosphine, non-symmetrically substituted, derivative of (μ -RE)₂Fe₂(CO)₆(E==S, Se).

FIGURE 1 Structure of 4a showing the atom numbering scheme.

SUPPLEMENTAL MATERIAL AVAILABLE

Tables of fractional atomic coordinates, thermal parameters, interatomic distances, observed and calculated structure factors are available on request from the authors.

Acknowledgments

We are grateful to the National Natural Science Foundation of China and the Laboratory of Organometallic Chemistry at the Shanghai Institute of Organic Chemistry for financial support of this work.

References

- [1] J.P. Crow and W.R. Cullen, Can. J. Chem., 49, 2948 (1971).
- [2] J.A. de Beer, R.J. Haines, R. Greatrex and N.N. Greenwood, J. Chem. Soc. (A), 3272 (1971).
- [3] L.-C. Song, Q.-M. Hu and J.-T. Wang, Chem. J. Chinese Univ. (English Edition), 2, 32 (1986).
- [4] L.-C. Song and Q.-M. Hu, J. Inorg. Chem., 4, 35 (1988).
- [5] L.-C. Song, Q.-M. Hu, J.-T. Wang, X.-Y. Lin, Q.-T. Zheng, S.-D. Zhang and F.-L. Shen, Acta Chim. Sin., 44, 558 (1986).
- [6] L.-C. Song, Q.-M. Hu, R.-J. Wang and H.-G. Wang, Acta Chim. Sin., 46, 984 (1988).
- [7] W. Hieber and A. Zeidler, Z. Anorg. Allg. Chem., 329, 92 (1964).
- [8] L.-C. Song, C.-G. Yan, Q.-M. Hu, R.-J. Wang and H.-G. Wang, Acta Chim. Sin., 53, 402 (1995).
- [9] L.-C. Song, C.-G. Yan, Q.-M. Hu, R.-J. Wang and T.C.W. Mak, Organometallics, 14, 5513 (1995).
- [10] J.P. Collman, L.S. Hegedus, J.R. Norton and R.G. Finke, "Principles and Applications of Organotransition Metal Chemistry", 2nd ed., (California University Science Books, Mill Valley, 1987).
- [11] C.F. Campana,, F.Y.K. Lo and L.F. Dahl, Inorg. Chem., 18, 3060 (1979).
- [12] D. Buchholz, G. Huttner, L. Zsolnai and W. Imhof, J. Organomet. Chem., 377, 25 (1989).